RAG Architecture

What is RAG?

Retrieval-Augmented Generation (RAG) combines the power of large language models with external knowledge retrieval. Instead of relying solely on parametric knowledge learned during training, RAG systems dynamically fetch relevant information to generate more accurate, up-to-date, and verifiable responses.

Why RAG is Needed

LLM Limitations

  • Knowledge cutoff date
  • Can't access private data
  • May hallucinate facts
  • Can't cite sources

RAG Solutions

  • Real-time information access
  • Query private knowledge bases
  • Grounded in retrieved facts
  • Provides source attribution

RAG Pipeline Architecture

Core Components

Documents

Source data

Embeddings

Vector representations

Vector DB

Indexed storage

Retrieval

Find relevant chunks

Generation

LLM response

Step-by-Step Process

  1. 1
    Document Processing: Split documents into chunks, clean text, extract metadata
  2. 2
    Embedding Generation: Convert text chunks into high-dimensional vectors
  3. 3
    Indexing: Store embeddings in vector database with efficient search structures
  4. 4
    Query Processing: Embed user query and search for similar chunks
  5. 5
    Context Assembly: Combine retrieved chunks with query into prompt
  6. 6
    Response Generation: LLM generates answer using retrieved context

Architecture Patterns

Basic RAG

Simple retrieval and generation

Components

  • Embedding Model
  • Vector DB
  • LLM
  • Simple Prompt

Pros

  • Easy to implement
  • Low complexity
  • Quick prototyping

Cons

  • Limited accuracy
  • No query optimization
  • Basic context handling

RAG Implementation Libraries

LangChain

Python/JS
Best for: Full-stack RAG applications

Key Features:

Extensive integrationsChain abstractionsMemory management
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import RetrievalQA

# Initialize vector store
vectorstore = Chroma.from_documents(
    documents=docs,
    embedding=OpenAIEmbeddings()
)

# Create RAG chain
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=vectorstore.as_retriever(),
    return_source_documents=True
)

LlamaIndex

Python
Best for: Document-heavy applications

Key Features:

Data connectorsIndex structuresQuery engines
from llama_index import VectorStoreIndex, SimpleDirectoryReader
from llama_index.llms import OpenAI

# Load and index documents
documents = SimpleDirectoryReader('data').load_data()
index = VectorStoreIndex.from_documents(documents)

# Query with RAG
query_engine = index.as_query_engine(
    llm=OpenAI(model="gpt-4"),
    similarity_top_k=3
)
response = query_engine.query("What is RAG?")

Haystack

Python
Best for: Enterprise search systems

Key Features:

Pipeline architectureProduction-readyMulti-modal support
from haystack import Pipeline
from haystack.nodes import EmbeddingRetriever, PromptNode

# Build RAG pipeline
pipeline = Pipeline()
pipeline.add_node(
    component=retriever,
    name="Retriever",
    inputs=["Query"]
)
pipeline.add_node(
    component=prompt_node,
    name="PromptNode",
    inputs=["Retriever"]
)

Production Challenges

Latency

RAG adds retrieval time to generation

Solutions:

  • Cache frequent queries
  • Optimize embedding dimensions
  • Use faster vector indexes
  • Parallel retrieval and generation

Context Window Limits

LLMs have token limits for context

Solutions:

  • Implement context compression
  • Use hierarchical summarization
  • Smart chunk selection
  • Sliding window approach

Retrieval Quality

Retrieved chunks may not be relevant

Solutions:

  • Hybrid search (vector + keyword)
  • Query expansion/rewriting
  • Cross-encoder re-ranking
  • Feedback loops for improvement

Data Freshness

Keeping vector index up-to-date

Solutions:

  • Incremental indexing
  • Real-time embedding pipeline
  • Version control for embeddings
  • Scheduled re-indexing

Advanced RAG Patterns

Multi-Query RAG

Generate multiple query variations to improve retrieval coverage

# Generate multiple queries from user input
queries = [
    "What is transformer architecture?",
    "How do transformers work in NLP?",
    "Explain self-attention mechanism",
    "Transformer model components"
]

# Retrieve for each query and merge results
all_docs = []
for query in queries:
    docs = retriever.get_relevant_documents(query)
    all_docs.extend(docs)

# Deduplicate and rank
unique_docs = deduplicate(all_docs)
ranked_docs = rerank(unique_docs, original_query)

RAG with Guardrails

Add safety and validation layers to RAG pipeline

  • Input Validation: Check queries for malicious content
  • Source Verification: Ensure retrieved docs are from trusted sources
  • Output Filtering: Remove sensitive information from responses
  • Hallucination Detection: Verify claims against retrieved context

Adaptive RAG

Dynamically adjust retrieval strategy based on query type

Simple Queries

Direct retrieval → Generate

Complex Queries

Decompose → Multi-hop retrieval

Comparison Queries

Parallel retrieval → Synthesize

Evaluation Metrics

Measuring RAG Performance

Retrieval Metrics

  • Precision@K: Relevant docs in top K results
  • Recall@K: Coverage of all relevant docs
  • MRR: Mean Reciprocal Rank of first relevant doc
  • NDCG: Normalized Discounted Cumulative Gain

Generation Metrics

  • Faithfulness: Answer grounded in retrieved context
  • Relevance: Answer addresses the query
  • Completeness: All aspects of query covered
  • Coherence: Logical flow and clarity

Next Steps

Now that you understand RAG architecture and implementation, explore how modern online search tools like Perplexity combine RAG with web-scale search capabilities.

Continue to Online LLM Search